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Where we’re at

Last week: ML wrap-up, theoretical background for modern ML 

This week: course overview, open questions after CS 109 

Next week: final exam Tuesday!



skills

CS 109

core probability fundamentals

random variables / distributions

sampling, making conclusions from data

machine learning

interpreting word problems into math analyzing and producing code

topics

problem-solving

examples

demos

stories and memes!

methodsmethods
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Solving a CS109 problem
Word 

problem

Application 
of formulas

maybe: 
numerical 

answer

Math 
expression of 

question

this is often 
the hard part!

this is usually what 
students focus on



Step 1: Defining Your Terms

1. Let X represent __________________________________ 
2. X~____________________________ 
3. We want to know _____________________________



Step 1: Defining Your Terms

1. Let X represent the number of 2’s and 5’s we roll 
2. X~Binom(100, 2/6)_____________________________ 
3. We want to know P(X < 30)_____________________

Problem: If you roll 100 dice, what is the probability of 
getting less than 30 2’s and 5’s?



Translating English to 
Probability

What the problem asks: What you should immediately 
think:

“What’s the probability of _____ ” P(            )

“___ given ___”, “___ if ___” ___ | ___

“at least ___” could we use what we know 
about everything less than __?

“approximate ____.” use an approximation!

“How many ways…” combinatorics

these are just a few, and these are why practice is the best way to prepare for the exam!
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Code in CS 109

Analysis Implementation
Expectation of 

binary tree depth

Titanic

Thompson Sampling

Peer Grading
Expectation of 

recursive die roll game

Biometric KeystrokesBloom Filter Analysis

Dithering

CO2 Levels
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Sum Rule Inclusion-Exclusion 
Principle

I can choose to dress up as 
one of 5 superheroes or 

one of 4 farm animals. How 
many costume choices?

I can choose to dress up as one 
of 5 superheroes or one of 6 

strong female movie leads. 2 of 
the superheroes are female 

movie leads. 
How many costume choices?

ou tcomes = |A | + |B | |A | + |B | − |A ∩ B |
for any |A ∩ B |if |A ∩ B | = 0

Counting

Product Rule Pigeonhole 
Principle

if all outcomes of B are possible 
regardless of the outcome of A

If m objects are placed into n 
buckets, then at least one bucket 
has at least ceiling(m / n) objects.

I can choose to go to one of 
3 parties and then trick-or-

If you have an infinite number 
of red, white, blue, and green 

ou tcomes = |A | × |B |



the divider method!

Combinatorics: 
Arranging Items

Permutations 
(ordered)

Combinations 
(unordered)

(n
k) = n!

k!(n− k)!n!Distinct

n!
k1!k2! . . . kn! (n+ r − 1

r − 1 )Indistinct



Probability basics

Probability =
Event space

Sample space

P(E) = lim
x−> ∞

n(E)
n

if all outcomes 
are equally likely!

(use counting with 
distinct objects)

in the general case

Axioms: 0 ≤P(E) ≤1 P(S) = 1 P(EC) = 1 − P(E)



Conditional Probability

P(E |F) = P(EF)
P(F)

definition:

P(EF) = P(E |F)P(F)
Chain Rule:

P(EF) = P(E ∩ F)*



Law of Total Probability

P(A) = P(AB) + P(ABC)

Let’s say we don’t know P(A), but we do know the 
probability of A given any value of B:

= P(A |B)P(B) + P(A |BC)P(BC)

P(A) = ∑
b∈S

P(A, B = b)

P(A) = ∑
b∈S

P(A |B = b)P(B = b)

If B can take on any value in S:



Bayes’ Rule

P(E |F) = P(F |E)P(E)
P(F)



Bayes’ Rule

P(E |F) = P(F |E)P(E)
P(F)

posterior priorlikelihood

normalization 
constant



Bayes’ Rule

P(E |F) = P(F |E)P(E)
P(F)

P(F |E)P(E) + P(F |EC)P(EC)
divide the event F into all the possible ways it can happen; use LoTP



Which rule when?

P(E |F) = P(F |E)P(E)
P(F)

P(A) = P(A |B)P(B) + P(A |BC)P(BC)

P(EF) = P(E |F)P(F)
- Goes from an “and” to a conditional or vice versa 
- Think about which event you want to condition on

- We don’t know about A but we do know about A|B 
- Don’t forget about the “and” version and “summation” version

- Good for when E|F is hard but F|E is not so hard 
- Common mistake: not trying chain rule first



Old Principles, New Tricks



Combining Events
P(ABC) = ?

Let X = AC:

P(ABC) = P(BX) = P(B |X)P(X) = P(B |AC)P(AC)

There are three correct ways to apply 
chain rule to P(ABC)!



Mutual Exclusion

“OR”

Independence
Independence

“AND”

P(EF) = P(E)P(F) |E ∩ F | = 0



Independence

“AND”

Independence

P(EF) = P(E)P(F)

Conditional 
Independence

“AND [if]”

P(EF |G) = P(E |G)P(F |G)
P(E |FG) = P(E |G)

If E and F are independent…..

…..that does not mean they’ll be 
independent if another event happens!

& vice versa



The “Gary” Problem



The “Gary” Problem
Conditional Bayes



The “Gary” Problem

“Full” Law of  
Total Probability



The “Gary” Problem

Conditional Independence 
given in problem
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Probability Distributions



Probability Distributions



Expectation & Variance

E[X] = ∑
x:P(x)> 0

x * P(x)

Discrete definition Continuous definition

Properties of Expectation Properties of Variance

E[X + Y] = E[X] + E[Y]

E[aX + b] = aE[X] + b Var(aX + b) = a2Var(X)

Var(X) = E[X2] − E[X]2

E[g (X)] = ∑
x

g (x) * pX(x) Var(X + Y ) = Var(X) + Var(Y )
If X and Y are independent:

E[X] = ∫x
x * fX(x)dx



All our (discrete) friends
Ber(p) Bin(n, p) Poi(λ) Geo(p) NegBin 

(r, p)

P(X) = p

E[X] = p E[X] = np E[X] = λ E[X] = 
1 / p

E[X] = 
r / p

Var(X) = 
p(1-p)

Var(X) = 
np(1-p) Var(X) = λ

Getting candy or 
not at a random 

house

# houses out of 20 
that give out candy

# houses in an 
hour that give out 

candy

# houses to visit 
before getting 

candy

# houses to visit 
before getting 
candy 3 times

(n
k)pk(1 − p)n−k λke−λ

k!
(1 − p)k−1p (k − 1

r − 1)pr(1 − p)k−r

1 − p
p2

r(1 − p)
p2



All our (continuous) friends
Uni(α, β) Exp(λ) N(μ, σ)

E[x] = 1 / λ E[x] = μ

thickness of sidewalk 
pavement between houses

time until feet get too sore 
to trick or treat

weight of filled candy 
baskets

f(x) = λe−λx

F(x) = 1 − e−λx

Var(x) = 1
λ2Var(x) = (β − α)2

12

E(x) = α + β
2

P(a ≤X ≤b) = b − a
β − α

f(x) = 1
β − α

f(x) = 1
σ 2π

e
−(x − μ)2

2σ2

F(x) = Φ( x − μ
σ

)

Var(x) = σ2



Discrete vs Continuous

E[X] = ∑
x:P(x)> 0

x * P(x) E[X] = ∫x
x * fX(x)dx

Discrete Continuous

P(A) = ∑
b∈S

P(A |B = b)P(B = b) P(A) = ∫b
P(A |B = b)fB(b)db

P(E |F) = P(F |E)P(E)
P(F) f(E = e |F) = P(F |E = e)f(E = e)

P(F)

P(EF) = P(E |F)P(F) f(E = e, F = f ) = f(E = e |F = f )f(F = f )



Approximations
When can we approximate a binomial?

p is small

Binomial

PoissonNormal
p is moderate

n is large



Continuity Correction

Only applies to PDF - why?



Joint Distributions
• Discrete case: 


• Continuous case: 
 
 
 

px,y(a, b) = P(X = a, Y = b)

P(a1 < x ≤a2, b1 < y ≤b2) = ∫
a2

a1
∫

b2

b1

fX,Y(x, y)dydx

fX(a) = ∫
∞

−∞
fX,Y(a, y)dy

Px(a) = ∑
y

Px,y(a, y)



Joint Distributions
• Discrete case: 


• Continuous case: 
 
 
 

px,y(a, b) = P(X = a, Y = b)

P(a1 < x ≤a2, b1 < y ≤b2) = ∫
a2

a1
∫

b2

b1

fX,Y(x, y)dydx

fX(a) = ∫
∞

−∞
fX,Y(a, y)dy

Px(a) = ∑
y

Px,y(a, y)

This is just marginalization!



Convolutions

(if X, Y are indep.)



Deriving Convolution

P(A + B = z) = ∑
b

P(A + B = z |B = b)P(B = b)

Expanded Law of Total Probability!

Discrete Case:



Deriving Convolution

P(A + B = z) = ∑
b

P(A + B = z |B = b)P(B = b)

Discrete Case:

P(A + B = z) = ∑
b

P(A = b − z |B = b)P(B = b)



Deriving Convolution

P(A + B = z) = ∑
b

P(A + B = z |B = b)P(B = b)

Discrete Case:

P(A + B = z) = ∑
b

P(A = b − z |B = b)P(B = b)

If A and B are independent:

P(A + B = z) = ∑
b

P(A = b − z)P(B = b)



Deriving Convolution

P(A + B = z) = ∑
b

P(A + B = z |B = b)P(B = b)

Discrete Case:

P(A + B = z) = ∑
b

P(A = b − z |B = b)P(B = b)

If A and B are independent:

P(A + B = z) = ∑
b

P(A = b − z)P(B = b)

Continuous Case:

f(A + B = z) = ∫b
f(A = b − z |B = b)f(B = b)db



Deriving Convolution

P(A + B = z) = ∑
b

P(A + B = z |B = b)P(B = b)

Discrete Case:

P(A + B = z) = ∑
b

P(A = b − z |B = b)P(B = b)

If A and B are independent:

P(A + B = z) = ∑
b

P(A = b − z)P(B = b)

Continuous Case:

f(A + B = z) = ∫b
f(A = b − z |B = b)f(B = b)db

If A and B are independent



Relationships Between 
Random Variables

if two random variables are independent, they have a covariance of 0 
(but not necessarily true the other way around!)

Covariance 
the extent to which the deviation of one variable from its mean 

matches the deviation of the other from its mean

Cov(X, Y ) = E[XY] − E[Y]E[X]

Correlation 
covariance normalized by the variance of each variable  

(cancels the units out)

ρ(X, Y ) = Cov(X, Y )
Var(X)Var(Y )



Beta
Our first look at the concept of estimating parameters by observing data!

https://seeing-theory.brown.edu/bayesian-inference/index.html#section3
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Sampling From Populations
Challenge: we want to know what the distribution of 

happiness looks like in Bhutan, but we have limited time and 
resources and the landscape looks like this:

climb every mountain!



Sampling From Populations

being an omniscient entity who knows the true 
population distribution

understanding how your results might differ if you 
sample from the same population multiple times

using statistical methods to draw reasonable 
conclusions about the population based on data 
from a random sample

violating data collection norms so that it’s 
unreasonable to assume that a sample is 
representative of the population only asking people 

in Thimphu, e.g.



Taking One Sample
Pick a random sample 

if sample size is large enough and sampling methodology is good 
enough, you can consider it representative of the population!

Take measurements 
we have handy equations for the sample mean and sample variance, 
which are unbiased estimators of the population mean and variance

X̄ =
n

∑
i= 1

Xi

n S2 =
n

∑
i= 1

(Xi − X̄)2

n− 1
makes the estimate 

unbiased

Report estimate uncertainty 
we can use the data from one sample to report our uncertainty about how 

our estimate of the mean might compare to the true mean (error bars!)

Std(X̄) ≈ ( S2

n )



Sample vs True

X̄ =
n

∑
i= 1

Xi

n S2 =
n

∑
i= 1

(Xi − X̄)2

n− 1

μ = E[X] σ2 = Var(X)

True mean and variance are properties of the underlying distribution. They 
are platonic ideals, completely unattainable!

Sample mean and variance are unbiased estimates of true mean and 
variance based on a single IID sample.

Var(X̄) = Var (
n

∑
i= 1

Xi

n) =
n

∑
i= 1

var ( Xi

n) =
n

∑
i= 1

Var(X)
n2 ≈ S2

n

Variance of sample mean tells us our uncertainty about how good of an 
estimate sample mean is.



Taking Many Samples
Unbiased Estimators 

the expected value of the estimated statistic is the value of the true 
population statistic (if many samples were to be taken)

Central Limit Theorem 
if you sample from the same population a bunch of times, the mean and sum of 

all your samples (or any IID RVs) will be normally distributed no matter what 
your distribution looks like!

https://seeing-theory.brown.edu/probability-distributions/index.html#section3



Bootstrapping: Simulating Many Samples 
From One

challenge 
we want to find the probability that the data results we saw were due to 

chance, but we only have one sample of data
insight 

since our sample represents our population, we can sample from the data 
we have and it’s as if we had gone out and collected more

We sample with replacement from our data and calculate our statistic of interest each 
time, ending up with many estimates for our statistic of interest. We can even use this data 

to assess whether our observations are due to chance based on our p-value of choice.

S2 more 
extreme?

4 1 2 2 2.1 no

3 3 3 0 0.8 no

2 1 1 5 2.6 yes

… … … … … …

1 2 3
4 31 2 4



General Inference: Sampling from a 
Bayesian Network to Find Joint Probability

Joint Sampling 
generate many “particles” by tracing through 
the network, generating values for children 

based on their parents

we can also generate samples where we hold some values fixed (MCMC)

Calculate Conditional Probability 
we can calculate any conditional probability of 

specific variable assignments by simply counting 
the particles that match what we’re looking for

P(X = a |Y = b) = N(X = a, Y = b)
N(Y = b)
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Classifiers

Untrained 
Classifier

xtrain y

+

θ

Trained Classifier

xclassify ̂y



Parameter Estimation
Maximum Likelihood Estimation

1. Find likelihood: product of likelihoods of each sample/
datapoint given theta 

2. Take the log of that expression 
3. Take the derivative of that with respect to the parameters 
4. Either set to 0 and solve  

    (if it’s a simple case with closed form solution)  
or plug into gradient ascent to find a value for theta that 
maximizes your likelihood

Maximum A Posteriori

1. Find likelihood: product of likelihoods of each sample/
datapoint given theta, times your prior likelihood of that theta 

2. -   4. same as above



MLE vs. MAP

arg max
θ

(P(data |θ)) = arg max
θ (

n

∏
i= 1

P(x(i) |θ)) = arg max
θ (

n

∑
i= 1

log P(x(i) |θ))
MLE:



MLE vs. MAP

arg max
θ

(P(data |θ)) = arg max
θ (

n

∏
i= 1

P(x(i) |θ)) = arg max
θ (

n

∑
i= 1

log P(x(i) |θ))
MLE:

arg max
θ

(P(θ |data)) = arg max
θ ( P(data |θ)P(θ)

P(data) )
MAP:



MLE vs. MAP

arg max
θ

(P(data |θ)) = arg max
θ (

n

∏
i= 1

P(x(i) |θ)) = arg max
θ (

n

∑
i= 1

log P(x(i) |θ))
MLE:

arg max
θ

(P(θ |data)) = arg max
θ ( P(data |θ)P(θ)

P(data) )
MAP:



MLE vs. MAP

arg max
θ

(P(data |θ)) = arg max
θ (

n

∏
i= 1

P(x(i) |θ)) = arg max
θ (

n

∑
i= 1

log P(x(i) |θ))
MLE:

arg max
θ

(P(θ |data)) = arg max
θ ( P(data |θ)P(θ)

P(data) ) = arg max
θ (P(θ)

n

∏
i= 1

P(x(i) |θ))
MAP:

= arg max
θ (log P(θ) +

n

∑
i= 1

log P(x(i) |θ))



Gradient Ascent

0  1  2  3  4  5  6  7  8  9  10 11 12

lik
el

ih
oo

d 
of

 d
at

a

θ

???????

η = 1

= sign [ ∂ prob
∂θ ]

step direction

step size

…



Classifier Algorithms

(general case)

Naïve Bayes Algorithm Logistic Regression
All features in x are 

conditionally independent 
given classification

Assumption Sigmoid gives us the 
probability of class 1

Whether y = 0 or y = 1 
maximizes the probability 

of our data

What are we optimizing/
figuring out?

The value(s) for θ such 
that the probability of our 

data is maximized

Learn (from data) 
estimates for 

                                        :  

How do we do that 
mathematically?

Probability of 1 datapoint 

Use data & gradient 
ascent to improve thetas 

̂P(Y = y), ̂P(Xi = xi |Y = y)

̂P(xi |y) = (ex. where Xi = xiand Y = y) + 1
(ex. where Y = y) + 2

̂P(Y = y) = ex. where Y = y
total examples

P(y |x) = σ(θTx)y ⋅ [1 − σ(θTx)]1−y

LL(θ) =
n

∑
i= 1

y(i) log σ(θTx(i))

∂LL(θ)
∂θj

=
n

∑
i= 1

[y(i) − σ(θTx(i))]x(i)
j

(1 − y(i)) log [1 − σ(θTx(i))]xj+



Neural Networks
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly 
classify data of the form (A OR B)?

1

A

B

θ1

θ2

θ3

(A OR B)

x θ ̂y



Neural Networks
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly 
classify data of the form (A OR B)?

1

A

B

−0.5

1 (A OR B)

x θ ̂y

1



Neural Networks
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly 
classify data of the form (A AND B)?

1

A

B

θ1

θ2

θ3

(A AND B)

x θ ̂y



Neural Networks
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly 
classify data of the form (A AND B)?

1

A

B

−1.5

1 (A AND B)

x θ ̂y

1



Neural Networks

1. Make deep learning assumption: 
2. Calculate log likelihood for all data: 
3. Find partial derivative of LL with 

respect to each theta: 
           use the chain rule!

P(Y = y |X = x) = ( ̂y)y(1 − ̂y)1−y

LL(θ) =
n

∑
i= 0

y(i)(log  ̂y(i)) + (1 − ̂y(i)) log [1 − ̂y(i)]

∂LL(θ)
∂θ( ̂y)

j
= ∂LL(θ)

∂ ̂y
⋅ ∂ ̂y

∂θ( ̂y)
j

∂LL(θ)
∂θ(h )

i, j
= ∂LL(θ)

∂ ̂y
⋅ ∂ ̂y

∂hj
⋅

∂hj

∂θ(h )
i, j



Concept Organizer

Check out cs109.stanford.edu > Handouts > Big Picture! (live later tonight)

http://cs109.stanford.edu


Good luck on the final!


